'Still’ in the eye of the beholder?
Beyond looking at digital data
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Primacy of gaze
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Much about how we look is inherently unsatisfactory




Visualisation Anarchy
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Knowledge-production processes may be:

 Poorly understood
* |nexplicit Because | say so

* Often highly personal
* Not necessarily optimised for digital data
(‘Born analogue’)

Primacy of gaze and human black-boxes are problematic



Beyond the eye of the beholder?

6 areas where artificial neural networks
outperform humans
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1. Image and object recognition
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Deep Learning/Machine Learning

Step change

It works!
Detection & classification
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Mmaths

CAPTIONS BY CAPTIONS BY

Deep Visualization Toolbox

g : Normanx Al StaxDpARD Al
yosinski.com/deepvis

#deepvis

. INKBLOT #1 INKBLOT #1
Understanding Neural Networks Through Deep Normon sees: Stondord Al sees:

Visualization “A MAN 1S ELECTROCUTED “A GROUP OF BIRDS
Jason Yosinski, Jeff Clune, Anh Nauyen, Thamas Fuchs, and Had Lipsan 3 -
AND CATCHES TO DEATH.” " b SITTING ON TOP OF A

Quick links: ICML DL Workshop paper | code | video
TREE BRANCH.”

Training/learning matters
Some networks may be better archaeologists......
How do we integrate into workflows?



Raking light

Digital data: Opportunities

* Deeper exploration of data
e Segmentation, classification, boundaries

* Different ways of looking
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MRM +

* Inference is not our preserve V-RTI

* Neural networks may learn more than
we thought — including about the ‘global
structure’ of objects

Work better?
Work smarter?
Work with an Al?



Digital data: Challenges

How clearly/explicitly do we understand what we see?

Does thinking digital challenge established practice?

How do we develop experience/knowledge-based systems?

How do we move beyond ‘just’ looking?

Beyond pretty pictures and visualisation anarchy — conventions?



