Modern spatial statistics move us beyond environmental determinism

A ‘provocation’ for

SCOTLAND’S
ROCK ART
PROJECT

Mark Lake
UCL Institute of Archaeology

Postscript—GIS, environmental determinism and archaeology: a parallel text
V. Gaffney and M. van Leusen
Agenda

- GIS-based landscape archaeology and environmental determinism
- Modern spatial statistics
- The case of Galician megaliths
GIS-based landscape archaeology

- **Rapid deployment** c.1990+

- **Textbook subject** 2002+

- **Anxiety about environmental determinism** by 1993

- **The rush to visibility analysis**
GIS-based landscape archaeology

- Rapid deployment c.1990+

- Textbook subject 2002+

- Anxiety about environmental determinism by 1993

- The rush to visibility analysis
GIS-based landscape archaeology

- Rapid deployment c.1990+
- Textbook subject 2002+
- Anxiety about environmental determinism by 1993
- The rush to visibility analysis

“The means by which we characteristically represent place ... the Geographical Information System, are all distinctively specular ... All attempt to lay the world bare, like Elliot’s ‘patient etherised upon a table’, or like the corpse under the pathologist’s knife” Thomas 1993
GIS-based landscape archaeology

- Rapid deployment c.1990+
- Textbook subject 2002+
- Anxiety about environmental determinism by 1993
- The rush to visibility analysis

GIS applications in archaeology are now characterised by a largely hidden agenda ... a functionalist approach to archaeological explanation ... [and] have consistently avoided study areas where rituality or subjectivity are a significant aspect of the archaeological record.
GIS-based landscape archaeology

- Rapid deployment c.1990+
- Textbook subject 2002+
- Anxiety about environmental determinism by 1993
- The rush to visibility analysis

Modern spatial statistics

- Distribution modelling 17/18C +
 - Point pattern analysis c2010+
 - First order effects
 - Second order effects
 - Inhomogeneity

Fox, 1932, The Personality of Britain
Modern spatial statistics

- Distribution modelling 17/18C +

- Point pattern analysis c2010+

Distributions:

- Random, clustered or dispersed
- Multiscalar
- Inhomogeneous
Modern spatial statistics

- Distribution modelling 17/18C +

- Point pattern analysis c2010+

Distributions:

- Random, clustered or dispersed
- Multiscalar
- Inhomogeneous

Complete spatial randomness

Clustered Events attract

Dispersed Events repel
Modern spatial statistics

- Distribution modelling
 17/18C +

- Point pattern analysis
 c2010+

Distributions:

- Random, clustered or dispersed
- Multiscalar
- Inhomogeneous
Modern spatial statistics

- Distribution modelling
 17/18C +

- Point pattern analysis
 c2010+

Distributions:

- Random, clustered or dispersed
- Multiscalar
- Inhomogeneous
Modern spatial statistics

- Distribution modelling
 17/18C +

- Point pattern analysis
 c2010+

Distributions:

- Random, clustered or dispersed
- Multiscalar
- Inhomogeneous

First order effects
Environmental constraints /opportunities
Modern spatial statistics

- Distribution modelling
 17/18C +

- Point pattern analysis
 c2010+

Distributions:
 - Random, clustered or dispersed
 - Multiscalar
 - Inhomogeneous

Second order effects
Social - repulsion
Modern spatial statistics

- Distribution modelling
 17/18C +

- Point pattern analysis
 c2010+

Distributions:
- Random, clustered or dispersed
- Multiscalar
- Inhomogeneous

Second order effects
Social - attraction
Modern spatial statistics

- Distribution modelling
 17/18C +

- Point pattern analysis
 c2010+

Distributions:
- Random, clustered or dispersed
- Multiscalar
- Inhomogeneous

Second order effects
Social - repulsion and attraction
The case of Galician megaliths

- Galician megalithic mounds
- First order effects (environment)
- Second order effects (social organisation)
- Spatial hierarchy

Miguel Carrero-Pazos
University of Santiago de Compostela

Andy Bevan
UCL Institute of Archaeology

Mark Lake
The case of Galician megaliths

- Galician megalithic mounds
- First order effects (environment)
- Second order effects (social organisation)
- Spatial hierarchy

Mamoa do rei B

Santa Marina (similar topography)
The case of Galician megaliths

- Galician megalithic mounds
- First order effects (environment)
- Second order effects (social organisation)
- Spatial hierarchy

121 sites in 620 sq km study area (over 7000 in Galicia as a whole)
The case of Galician megaliths

- Galician megalithic mounds

- First order effects (environment)

- Second order effects (social organisation)

- Spatial hierarchy

Multiple regression model of influence of elevation and distance to watershed
The case of Galician megaliths

- Galician megalithic mounds

- First order effects (environment)

- Second order effects (social organisation)

- Spatial hierarchy

Megaliths are clustered — we already know that!

Megaliths are still clustered if we control for environment — interesting!

Theoretical model of megaliths having ‘area of influence’ fits (Widom-Rowlinson penetrable sphere model)
The case of Galician megaliths

- Galician megalithic mounds
- First order effects (environment)
- Second order effects (social organisation)
- Spatial hierarchy

Megaliths are clustered — we already know that!

Megaliths are still clustered if we control for environment — interesting!

Theoretical model of megaliths having ‘area of influence’ fits (Widom-Rowlinson penetrable sphere model)
The case of Galician megaliths

- Galician megalithic mounds
- First order effects (environment)
- Second order effects (social organisation)
- Spatial hierarchy

Megaliths are clustered — we already know that!
Megaliths are still clustered if we control for environment — interesting!
Theoretical model of megaliths having ‘area of influence’ fits
(Widom-Rowlinson penetrable sphere model)
The case of Galician megaliths

- Galician megalithic mounds
- First order effects (environment)
- Second order effects (social organisation)
- Spatial hierarchy

Megaliths of similar size spaced at c. 4.5km intervals

Permutation test demonstrated that the largest tombs are distributed across spatial groups in a way that is broadly hierarchical.
Points for discussion

- Modern spatial statistics:
 - They facilitate empirical investigation of the interplay of different causes, as opposed to the a priori assertion of primacy according to theoretical preference.
 - The distribution of megalithic mounds in our example region reflects a preference for locations with particular environmental properties, but at a local scale the spacing of these mounds seems to reflect some kind of social partitioning of the landscape into spatially hierarchical units.

- But:
 - Does this really move us beyond the debate about environmental determinism?
 - Does it hinge on a kind of ‘residual’ logic — the social is whatever is left after controlling for the environment?
 - What do we mean by ‘environmental determinism anyway’ — is this really about cognitivism versus behaviourism?